专题专栏

Special Column
当前位置:首页 > 专题专栏 > 农药残留检测方法多!不同基质应该如何检测?

农药残留检测方法多!不同基质应该如何检测?

文章来源: 作者: 2023/10/8 10:10:31

蔬菜中农药残留的前处理提取方法汇总

分析样品是指实验室中用于分析测定并提供某种样品残留数据的那一部分样品。所以分析的样品要求必须是均匀且具有代表性的。在处理比较陌生的样品,尽可能参考相关文献报道的方法制备,这样可以减少许多困扰。



01分析样品的分类

由于样品中的基质和结构的差异,使得样品的提取比较复杂,尤其是浓缩提取的净化。

一般将样品分成三类:

1、中等和高含水量的样品:

根和鳞茎类蔬菜:胡萝卜、洋葱。

叶绿素含量最低的蔬菜和水果:仁果、核果、浆果和柑橘。

叶绿素含量高的作物:叶菜和豆菜。

2、干燥品。

3、油脂类。

02农药残留提取条件的选择

提取就是将残留在样品中的多种农药,采用合适的有机溶剂和方法,将其分离出来,以供净化后测定,这是农药分析非常关键的一步。提取效果的好坏,一方面决定于溶剂的选择,另一方面和提取的方法也有密切的关系。在选择提取溶剂时,既要注意到溶剂本身的性质,又要结合农药的特性及样品的状况,在选用提取方法时也要考虑上述情况。

1、溶剂的选择:

在农药分析中几乎不单独采用非极性溶剂,通常是与极性溶剂混合使用或只采用极性溶剂。

主要溶剂的极性强弱如下:

水>乙腈>甲醇>醋酸>乙醇>乙丙醇>丙酮>二恶烷>四氢呋喃>甲基乙基甲酮>苯酚>正丁醇>乙酸乙酯>乙醚>硝基甲烷>二氯甲烷>氯仿>苯>甲苯>二甲苯>四氯化碳>二硫化碳>环己烷>正己烷>正庚烷>煤油。

在农药分析中应用最广的溶剂为石油醚、丙酮、二氯甲烷和乙酸乙酯等。

2、农药的极性:

在提取样品中的农药残留时,农药本身的极性以及在提取溶剂中的溶解度,直接影响提取效果,一般采用和农药极性相仿的提取溶剂,即“相似相溶”原理,选择具有广泛覆盖面的溶剂作为农残提取溶剂。

部分有机磷农药的极性强弱如下:

氧化乐果>敌百虫>敌敌畏>马拉硫磷>倍硫磷>甲基对硫磷>对硫磷>甲拌磷>溴硫磷>辛硫磷。

3、样品的状况:

样品的特点和状态,在提取时也必须认真考虑。在AOAC中将样品分为脂肪性和低脂肪性两大类。脂肪含量大于10%为脂肪性样品,小于10%则为低脂肪性样品。脂肪性大的样品,需要先提取脂肪,而后测定脂肪中的农药残留量。

低脂肪性的样品又分为含水样品和干品两大类。前者的水分含量≥75%,后者为干的或低水分样品。含水分样品又分含糖多少分类:含糖5%以下,含糖15~30%等几种。

不同状态的样品,必须采用不同的提取溶剂。在谷物、茶叶一类水分低的样品中,不同提取溶剂的提取效率的差异最为突出,即便采样极性溶剂也不能完全提取,必须采用含水20~40%的溶剂或预先向试样中加入等量的水之后再行提取。土壤是个比较特殊的样品,是农药污染最大的受害者,许多农药较强地与土壤耦合,比动植物组织的提取更困难。土壤的水分、有机质、极性化合物以及其他因素的不同对农药的结合也不同,一般粘土高沙土低。

03农药残留的提取和纯化(净化)



1、振荡漂洗法

将待测样品浸泡于提取溶剂中,若有必要可加以振荡以加速扩散,适用于附着在样品表面的农药以及叶类样品中的非内吸性农药。

2、匀浆萃取法

将一定量的样品置于匀浆杯中,加入提取剂,快速匀浆几分钟,然后过滤出提取溶剂净化后进行分析。

有时为了使样品更具代表性,需加大样品量,这时可先将大量样品匀浆,然后称取一定量的匀浆后的样品用萃取溶剂萃取。

尤其适用于叶菜类及果实样品,简便、快速。

3、索氏提取法

索氏提取法是一种经典萃取方法,用于测量食品、饲料、土壤、聚合物、纺织品、纸浆和许多其他物质中的可提取物,在当前农药残留分析的样品制备中仍有着广泛的应用。美国环保署(EPA)将其作为萃取有机物的标准方法之一(EPA3540C);国标方法中也用使用索式提取法作为提取方法。由于是经典的提取方法,其它样品制备方法一般都与其对比,用于评估方法的提取效率。

大多数农药是脂溶性的,所以一般采取提取脂肪的方法,将经分散而干燥的样品用无水乙醚或石油醚等溶剂提取使样品中的脂肪和农残进入溶剂中,再净化浓缩即可分析。

适用谷物及其制品、干果、脱水蔬菜、茶叶、干饲料等样品。无水乙醚或石油醚等溶剂,提取效率高,操作简便。

索氏提取法步骤:称取2-5g样品到索氏样品套管中,添加150ml溶剂到索氏烧瓶中,按每小时4-6循环萃取16-24小时,然后冷却,对萃取液进行浓缩,再适当的溶剂进行复溶,进行仪器分析。

需要注意:提取时间长,消耗大量的溶剂必须考虑被测物的稳定性;含水量过高的水果蔬菜不宜作为分析对象。

影响提取效果的因素主要有:决定索氏提取效率的因素除了提取溶剂之外,还有就是提取溶剂的回流次数(在某种程度上可以说是提取时间),料液比以及提取温度等。

提取过程中的注意事项:

①一般在实验中水浴的温度不能过高以防止暴沸造成目标物的损失。

②在索氏提取中,装样品一般都是用滤纸筒,不宜使用金属的筛筒(这会造成部分农药目标物的分解,如Fe可能会造成某些有机氯农药分解)。此外,应注意滤纸筒在装样之后与提取器的匹配,尤其须注意纸筒不能堵塞虹吸回流管。

③实验中所使用的索氏提取器不宜过大,否则溶剂蒸气到达提取器之前由于环境空气的冷凝作用而减少(特别是冬天等环境温度较低的时候),从而减缓了提取效率,使得提取耗时过长。

4、液-液萃取法

向液体混合物中加入某种适当溶剂,利用组分溶解度的差异使溶质由原溶液转移到萃取剂的过程向溶液试样加入非极性或水溶性的溶剂,用振荡等方法来辅助提取试样中的溶质。

适合液态样品,或经过其他方法溶剂提取后的液态基质。常用非极性的溶剂有正己烷、苯、乙酸乙酯;常用的水溶性溶剂有二氯甲烷、甲醇、乙、丙酮以及水。

注意:不需要昂贵的设备和特殊仪器,操作简便;常用到大体积的溶剂,而在振荡分配过程中则要控制溶剂体积,费时费力,容易引起误差。

5、超声波提取方法

超声波是一种高频率的声波,利用空化作用产生的能量,用溶剂将各类食品中残留农药提取出来。

将样品放在超声波清洗机,利用超声波来促进提取适合液态样品,或经过其他方法溶剂提取后的液态基质。适用溶剂包括甲醇,乙醇,丙酮,二氯甲烷,苯等,简便,提取温度低、提取率高,提取时间短。

(1)提取原理

①机械效应

超声波在介质中的传播可以使介质质点在其传播空间内产生振动,从而强化介质的扩散、传播,这就是超声波的机械效应。超声波在传播过程中产生一种辐射压强,沿声波方向传播,对物料有很强的破坏作用,可使细胞组织变形,植物蛋白质变性;同时,它还可以给予介质和悬浮体以不同的加速度,且介质分子的运动速度远大于悬浮体分子的运动速度。从而在两者间产生摩擦,这种摩擦力可使生物分子解聚,使细胞壁上的有效成分更快地溶解于溶剂之中。

②空化效应

通常情况下,介质内部或多或少地溶解了一些微气泡,这些气泡在超声波的作用下产生振动,当声压达到一定值时,气泡由于定向扩散(rectieddiffvsion)而增大,形成共振腔,然后突然闭合,这就是超声波的空化效应。这种气泡在闭合时会在其周围产生几千个大气压的压力,形成微激波,它可造成植物细胞壁及整个生物体破裂,而且整个破裂过程在瞬间完成,有利于有效成分的溶出。

③热效应

和其它物理波一样,超声波在介质中的传播过程也是一个能量的传播和扩散过程,即超声波在介质的传播过程中,其声能不断被介质的质点吸收,介质将所吸收的能量全部或大部分转变成热能,从而导致介质本身和药材组织温度的升高,增大了药物有效成分的溶解速度。由于这种吸收声能引起的药物组织内部温度的升高是瞬间的,因此可以使被提取的成分的生物活性保持不变。

此外,超声波还可以产生许多次级效应,如乳化、扩散、击碎、化学效应等,这些作用也促进了植物体中有效成分的溶解,促使药物有效成分进入介质,并与介质充分混合,加快了提取过程的进行,并提高了药物有效成分的提取率。

注意:

①超声波提取器功率较大,噪音比较大,对容器壁的厚薄及容器放置位置要求较高,目前仅在实验室内使用,难以应用到大规模生产上。目前实验室使用较多的还是超声波清洗器作为提取仪器。一般在超声波提取之前应该将待提取样品用提取溶剂浸泡一段时间,使之相互充分的接触、渗透。在超声波提取中,最好都是使用混合提取溶剂,分步骤提取,以提高目标物的提取效率。

②对玻璃容器也有一定的要求,如果玻璃容器的质地不好,有裂隙等,在提取过程中很容易破裂,因此在选择玻璃器皿时应特别注意。

③有机溶剂在使用超声波提取时,挥发性会增强,污染环境。要注意提取容器不能密闭,应有一定的空间。

④使用超声波清洗器进行提取,需注意在整个超声容器中超声波场的分布是不均匀的,类似在波场的分布中有死角,这会使得部分样品的提取效率显著下降,从而导致重现性较差。

⑤超声波提取所需要的溶剂量较大,一般都是分步提取、过滤。虽然操作简单但是操作的劳动强度较大,而且需要进行过滤等步骤将提取溶剂与样品分离。

6、固相萃取法

利用吸附剂对待测组分与干扰杂质的吸附能力的差异,在层析柱中加入一种或几种吸附剂,再加入待测样本提取液,用淋洗液洗脱。适用于分离保留性质差别很大的化合物;

7、固相微萃取法

(1)固相微萃取装置主要由手柄和萃取头2部分构成,萃取头是涂有不同吸附剂的熔融纤维,选择的基本原则是“相似相溶原理”;

(2)用极性涂层萃取极性化合物,用非极性涂层萃取非极性化合物。集采集、浓缩于一体,简单、方便、无溶剂,不会造成二次污染;

(3)若在样品中加入适当的内标进行定量分析,其重现性和精密度都非常好。

8、超临界流体萃取

利用超临界流体高密度、粘度小、渗透能力强等特点,能快速、高效将被测物从样品基质中分离,先通过升压、升温使其达到超临界状态,在该状态下萃取样品,再通过减压、降温或吸附收集后分析,对热不稳定、难挥发性的烃类,非极性脂溶化合物,二氧化碳,水,乙烯,丙酮,乙烷等可进行族选择性萃取,萃取物不会改变其原来的性质,萃取过程简单易于调节,萃取装置较昂贵,不适合分析水样和极性较强的物质。

9、自制提取装置

将超声波的空化效能与固相萃取的特性结合起来。超声波提取后,再通过固相萃取柱来纯化。适用于浓缩样品中的物质、分离保留性质差别很大的化合物,或经过其他方法溶剂提取后的液态基质,常用试剂水,乙烯,丙酮,乙烷等;吸附剂氟罗里硅土,氧化铝,硅藻土等,集合了超声波提取和固相萃取两种方法的优点,适合多样品的同时处理需要定时清洗。

10、微波辅助萃取法

(1)微波能是一种非离子辐射,它使分子中的离子发生位移和偶极矩,其中有机物受微波辐射使其分子排列成行,又迅速恢复到无序状态。这种反复进行的分子运动,让样品液迅速加热。

(2)微波穿透力强,能深入机体内部,辐射能迅速传遍整个样品液,而不使其表面过热。内部的分子运动溶剂与样品液充分作用,加速了提取过程。适用于土壤、食品、饲料等固体物中的有机物,植物及肉类食品中的农残提取简便、快速。

该法在缩短萃取时间和提高萃取效率的同时也使萃取液中干扰物质的浓度增大,加重了净化步骤的负担。

11、加速溶剂萃取法方法

该法是在较高温度(20~2000℃)和压力条件(10.3~20.6MPa)下,用有机溶剂萃取。

(1)适用于固体和半固体样品;

(2)食品分析中有广泛的应用;

(3)提取复杂的生物基质中有机氯农药;

(4)处理中毒样品;

(5)有机溶剂用量少(1g样品仅需1.5ml溶剂);

(6)样品处理时间短(12~20min);

(7)回收率好;

(8)处理中毒样品,如氟乙酰胺、毒鼠强,更显示出其萃取快速的优越性,能为及时抢救赢得时间。

12、基质固相分散萃取法

此技术使分析者能同时制备、萃取和净化样品。该技术包括在玻璃研钵中将键合相载体和组织基质混合,用玻璃杵将其研碎成近乎均质分散的组织细胞和基质成分。组织与涂以C18或C3、C8的硅胶迅速混合产生半固体物质,将半固体物质填充于柱中。根据不同分析物在聚合物/组织基质中的溶解度不同进行洗脱。这样获得的萃取物在仪器分析前不需要再处理。

(1)特别适合于食品中药物、污染物及农残分析;

(2)几乎囊括了所有的固体样品;

(3)对于很难匀浆和均质的样品,尤其适于处理。

13、衍生化技术

通过化学反应将样品中难以分析检测的目标化合物定量转化成另一易于分析检测的化合物,通过后者的分析检测对可疑目标化合物进行定性和定量分析。

05农药残留的净化技术

在样品的提取液中,除了农药残留外,还有色素、油脂或其他天然物质,在测定前须去除这些干扰物质,这就是净化。

由于农药种类不同,采用的检测器也不同。各种检测器对净化液程度的要求也不互相同。ECD放射源易受污染,对净化要求高,FPD对净化要求不高,采用简单的方法净化就可以了。

液-液分配:在一组不相溶的溶剂对中,溶解某一溶质成分,这种溶质以一定比例分配在溶剂的两相中。在两相溶剂中的分配比称为分配系数。如此反复分配,便可使不同的物质组分得到分离,从而达到净化的目的。分配时溶剂体积及提取次数,必须根据P值进行计算。P值指在一组等容积互不相溶的溶剂对,溶质以一定比例分配在溶剂的两相中,该比值即为该物质对该组溶剂的P值。

06常见问题及注意事项

乳化的解决:溶液分配过程中,往往会出现乳化现象,如不很好的解决,会影响分析结果的准确性。

1、加入饱和硫酸水溶液:由于溶液中有大量的硫酸钠离子存在,盐析作用可以使乳化层破坏,(也可以加入适量的氯化钠)。

2、加入硫酸水溶液,加入量由10毫升、20毫升、30毫升逐步增加,乳化可以减轻或消除,此法只适用于对酸稳定的农药。

3、采用高速离心,破坏乳化层,消化乳化现象。

4、根据样品的情况添加,如蜂蜜和炼乳类,可以加草酸钾,茶叶类的可加入丙酮或甲酸,含糖样品,可以加入丙酮。

样品前处理环节在分析检测过程中非常重要,几乎耗费整个分析过程的60%以上的时间,主要的分析误差也来自样品前处理环节,直接影响分析结果的精密度和准确度。因此选择合适的前处理方法,是保证检验质量和提高检验效率的前提。此次课程就样品前处理常用技术、新技术进展、分析实验室用水在不同前处理仪器中的影响和相关行业用水标准进行分享。

农药残留的主要检测方法

农药残留的检测方法有很多,其中应用较广泛的是色谱检测法。果蔬在经过实验前处理时的提取、净化、浓缩等步骤后,有以下几种检测方法。

01气相色谱法

用气体作为流动相的色谱法称为气相色谱法,适用于检测容易挥发而不发生分解的有机化合物。在气相色谱分析中会使用各种高灵敏度的检测器,比较常用的包括FPD(火焰光度检测器)、ECD(电子俘获检测器)、NPD(氮磷检测器)等。

FPD是一种对硫、磷有选择性的检测器,这两种元素在燃烧中被激发,从而发射特征的光信号,因此通常我们在检测果蔬中有机磷类的农药残留时,便会选择用FPD来检测。

ECD通常用来检测具有电负性的物质,而且电负性越强,灵敏度越高。在果蔬中的农药残留检测中,ECD被广泛应用于有机氯类农药的检测。

02液相色谱法

用液体作为流动相的色谱法被称为液相色谱法,适用于检测分析溶于水或有机溶剂的各种物质。液相色谱分为正相色谱法和反相色谱法,在农药残留应用较多的是反相色谱法,适用于检测非极性或中等极性的物质,对于一些氨基甲酸酯类农药,通常会用液相色谱法或高效液相色谱法进行检测。

03联用技术

联用技术包括气相色谱—质谱联用(GC-MS)、液相色谱—质谱联用(LC-MS)等。在联用技术中,我们不但可以得到目标化合物的定性信息,同时也可以得到它的定量结果,所以在果蔬的农药残留检测中通常可以用来对目标化合物的确证。